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We consider multiagent systems whose agents compete for resources using strategies with adaptable pref-
erences. Diversity of initial preferences of strategies is introduced by randomly assigning virtual points to the
strategies of each agent. When diversity increases, the successive appearance of scaling, kinetic sampling and
waiting mechanisms shows that agent cooperation becomes increasingly important. Analyses yield excellent
agreement with simulations over nine decades of data.
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Many natural and artificial systems involve interacting decisions of each agent are prescribedsbytegies which
agents, each making independent decisions to compete fare Boolean functions mapping thestory of the winning
limited resources, but globally exhibit coordinated behaviorbits in the most recemh steps to decisions + or —. Before the
through their mutual adaptatidi,2]. Examples include the game starts, each agent randomly piskstrategies. Out of
competition of predators in ecology, buyers or sellers in ecohers strategies, each agent makes decisions according to the
nomic markets, and routers in computer networks. While anost successful one at each step; the success of a strategy is
standard approach is to analyze the steady state behavior wfeasured by itgirtual point, which increasegdecreaseshy
the system described by the Nash equilig3g it is inter- 1 if it indicates a winninglosing) decision at a time step.
esting to consider the dynamics of how the steady state is Diversity of initial preferences of strategies is introduced
approached. Dynamical effects are especially relevant in By randomly assigningR virtual points to thes strategies of
changing environment, such as that in economics or distribeach agent before the game starts. Hence the initial virtual
uted control. point of each strategy obeys a multinomial distribution with

Adaptation is a collective dynamical process. When it ismeanR/s and varianceR(s—1)/s?. The ratiop=R/N is re-
achieved by small iterative steps taken by many agentserred to as theliversity In particular, fors=2 and oddR, no
Hamiltonian functions can be used to analyze the steadyyyg strategies have the same virtual points throughout the
state behaviof4]. However, when it proceeds in large Stepsvprocess, and the dynamics is deterministic, resulting in

a dynamical approach is more applicable than a gamegjghyy precise simulation results useful for refined compari-
theoretic approach. For example, when the complexity of th%on with theories

agents in a myltiagent system is Icmvmaladaptivd)ehavior To describe the macroscopic dynamics of the system, we
takes place, in which there are bursts of the population’s fine theD-dimensional vectol&(t) =3, &X(t)/N where'
decisions due to their premature rush to certain states they L : =i g ’ )

# is the decision of ageritat stateu, andD=2" is the

perceive to be advantageo[is6]. The resultant large fluc- 2O X
Rumber of histories. While only one of tHeé components

tuations indicate that the agents fail to cooperate with eac VTS i
other. corresponds to the historical staté(t) of the system, the

Maladaptation originates from the uniformly zero prefer- augmentation t® components is necessary to describe the
ence of strategies in the initial condition. The dependence dfttractor structure and the transient behavior of the system
initial conditions was noted in a statistical mechanical ap-dynamics. The inset of Fig. 1 illustrates the convergence to
proach[4]. System efficiency can be improved by randomthe attractor for thga wspahzaple casemnf 1. The dynamics '
initial conditions in systems driven by internal information Proceeds in the direction which tends to reduce the magni-
[7], or external informatior{8], accompanied by hysteresis tude of the components ok“(t) [4]. However, a certain
[9]. The same is valid in models with batch updgté] and ~ @mount of maladaptation always exists in the system, so that
their noisy extensiof11]. the components of“(t) overshoot, resulting in periodic at-

In this Rapid Communication, we numerically and ana-tractors with period of B. Every staten appears as histori-
lytically study the dynamical mechanisms by which agentscal states two times in a steady-state period, yielding the
cooperate with each other to reach steady states. This is doMdnning bits — and + each exactly once. One occurence
by tuning the diversity of the agents in their initial prefer- brings A* from positive to negative, and another bringing it
ences of strategies, so that the population of agents adaptifiick from negative to positive, thus completing a cycle. For
to the environment at each step becomes increasingly sparf&=1, the steady state is described by the sequerite
with diversity. When maladaptation gradually vanishes, we==,+,+,—, where both states — and + are followed by
look for evidence that cooperative mechanisms among and + once each. For general valuesmpfthe states in an
agents become favored or even indispensable. Concretelgitractor are given by a binary de Bruijn sequence of order
we consider a prototype of multiagent systems, in which an+1 [12].
population ofN agents compete in an environment of limited ~ The effects of introducing diversity is shown in Fig. 1,
resourcesN being odd[2]. Each agent makes a decision Which plots the steady—s_tate variance of the population for
+ or — at each time step, and the minority group wins. Thedecision +, o2/N=N({A* O(t)—(A* O(1))]?)/4, as a func-

1539-3755/2004/1@)/0251034)/$22.50 70025103-1 ©2004 The American Physical Society



WONG, LIM, AND GAO

10° - — point distribution remains unchanged, but the peak position
oot} € shifts with the dynamics. If the virtual point displacement of
Q 0 strategya at timet is 4(t), then the agents holding strate-

10’ Q. _;;\1 . gies a and b make decisions according to strategyif
‘Q 0 0.03 20 +Q,(1) - Qp(t) >0, and strategyp otherwise. At timet, we
z oL K} can write Q,() =X, k,(1)&5, wherek (1) is the number of
“ 10 % wins minus losses of decision + up to tihat statew, and

10'F

10° 10° )
a=2"IN representation,
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&L is the corresponding decision of strategyConsider the
difference AX(t) —A*(0) =2, Sip(@) (&5 =)0 (w+Q4(1)
M S ON-10% -Qu(1)—0O(w)]/N. Its average can be found by introducing
p=4 & %X N =511 the average(S,,(w)), writing the step function® as a
102 L L L sum over Kronecka deltas and introducing their integral

using the identityek¥¢-%)=cog ko

+i sin k@ coska(&:— &) +sir? koghgl, and noting that
FIG. 1. The dependence of the variance of the population fors &=0. The final result is

decision + on the complexity for different diversitiessat2 aver-
aged over 128 samples. The horizontal dotted line is the limit of

Tdo g sink,(b)é
random decisions. Inset: the state motion of a sample in the phase (AX(t) — A4(0)) = —coRg———=
space fom=1. Solid dots: attractor states. o 2m sin 6

tion of thecomplexitya=D/N [5]. We found that the vari-

ance decreases significantly with diversity in gyanmetric

phase wherew< a(=0.3), and remains unaffected in the
asymmetricphase witha> a,, [13,14. The dependence of When p~NT

xcosk, (0] cog k,mo. (1)

vFEL

(AH(t+1)-A*(t))~0O(1) and is self-

the variance on the diversity is further shown in Fig. 2. Fo-averaging. Sincéd“(0) is Gaussian with varianchl™, the

cusing on the physical picture of the dynamid®], four  values of A“(t) at the attractors can be computed, and the

regimes can be_ identif_ied. _ variance found. For example, fan=1, 02/N=N[7(Cgs1)?
(@) Multinomial regime When p~N%, ¢?/N~N with  —2c.,,Cr.s+ 7(Crea)?], wherec,,=2""C}, for even integen.
proportionality constants dependent on To analyze this (b) Scaling regimeWhenp~ 1, /N~ p~* with propor-

and other regimes, we l&,,(w) be the number of agents tionality constants effectively independentroffor m not too
holding strategiesa and b (with a<b), where the virtual |arge[16]. In this case, Eq(1) can be simplified tgA(t)

point of strategya is initially displaced byw with respectto  _ AX0))=Kk,(H\2/mR. The average step size becomes

b. The average of5,,(w) over initial condition is propor- <Aﬂ(t+1)_A,L(t)>=\;m%wthom-uz) and is self-

tional to the binomial distribution of virtual points, i.e.,
(Sip(@))=NCg_,)2/ 2°7*R. The key to analyzing the sys-

averaging. To interpret this result, we note that changes in
AX(t) are only contributed byfickle agents with marginal

tem dynamics is the observation that the virtual points of Breferences of their strategies. That is, those with((t)
strategy displace by exactly the same amount for all agents.q t)=+1 and Ei—¢&h= 52 sgnAX(t) for pu=wu"(t). For

Hence for a given strategy pair, the profile of the virtual|; 46 R the binomial virtual point distribution among agents
4 of a given strategy pair is effectively a Gaussian with vari-
anceR. Hence the number of agents switching strategies at
time t scales as the height of the Gaussian, which2iénR.
Thus, by spreading the virtual point distribution, diversity
reduces the step size and hence maladaptation.
As a result, each state of the attractor is confined in a
D-dimensional hypercube of sia@/nR, irrespective of the
initial position of theA* components. Starting from the ini-
: tial stateA*(0), the state changes in steps of si&d 7R until
N =2047 RS0 it reaches the attractor, whos® 2istorical states are given
by vV2/7R\7R/I2A*(0)] and \2/#wR{v7R/2A*0)]-1},
where[x] represents the decimal part »f[17]. Averaging
over A*(0), which are Gaussian numbers with mean 0 and
variance 1N, the variance of decisions become/N
where f(p) approacheg1-1/4D)/3 for p>1.
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FIG. 2. The dependence of the variance of the population for:f(p)/zm)’

decision + on the diversity ah=1 ands=2. Symbols: simulation NOte thatf(p) is a smooth function o, sinces?/N depends
results averaged over 1024 samples. Lines: theory. Dashed-dott&d p mainly through the step size factor 12 wheread(p)

line: scaling prediction. Inset: Comparison between simulation remerely provides a higher order correction to the functional
sults (symbolg, theory with waiting effects includedines) and  dependence. This accounts for the scaling regime in Fig. 2.
excluded(dashed lines Furthermore, we note th&fp) rapidly approaches 1/3 when

025103-2

RAPID COMMUNICATIONS



RAPID COMMUNICATIONS

DYNAMICAL MECHANISMS OF ADAPTATION IN ... PHYSICAL REVIEW E 70, 025103R) (2004

m increases. Hence for general valueswfo?/N—1/6mp,  vergence time become(§+\f'2)(p for m=1. Similarly, the
provided thatm is not too large. distribution of payoffs among thdérozen agents(that is,

(0) Kinetic sampling regimeWhenp~N, ¢®/N deviates  agents who do not switch their strategies at the steady) state
above the scaling witp™, and is given byr?/N=f(A)/N,  also depends on the transient. Since the system dynamics
whereA = 2N/ mp is thekinetic step sizeandf, is a func-  reaches a periodic attractor, they have constant average pay-
tion dependent on the memory size. Here A“(t+1)  offs at the steady state. Hence any spread in their payoff
—AX(t) scales ad™* and is no longer self-averaging. Rather, distribution is a consequence of the transient dynamics.
it is equal to 2N times the number of agents who switch Thys, in the scaling regime, the mean square payoff scales as
strategie_sat timég WhiCh is Poisson distrib_uted with a mean p. Specifically, wherp> 1, the mean square payoff becomes
of N/y27R. However, since the attractor is formed by steps ., for m=1. Simulation results of both the convergence time

which reverse the sigrof A*, the average step size in the 5ng the mean square payoff have an excellent agreement
attractor islarger than that in the transient state. To see this,yith the theory[15].

we consider the probability dP,(AA) of step sizes\A in The results presented here can be generalized to other
the attractor. Assuming that all states of the phase spacgses. Consider thexogenouslynamics, in which the infor-
are equally likely to be accessed, we ha®(AA)  mation u(t) was randomly and independently drawn at each
=2p Paf(AA,A), where Py(AA,A) is the probability time stept [4]. The picture that the states of the game are
of finding the positionA with displacementAA in the  hopping between hypercubes in the phase space remains
attractor. Consider the example afi=1 in the inset of yajid. At the steady state, the attractor consists of hoppings
Fig. 1. The sign reversal condition implies tfa{:(AA,A)  among all vertices of a hyperpolygon enclosing the origin in
=Ppo(AA)IL,O[-A*(A*+AA*)], where Ppo(AA) is the  the phase space, analogous to the presmdbgenousase,
Poisson distribution of step sizes, vyieldin®.«(AA)  in which a fraction of hyperpolygon vertices belong to the
=Ppo(AA)IL, AA*. Thus the attractor averagéAA®)?),,  attractor. In the scaling regime, the behavior depends on the
which are required for computing the variance of decisionsscaling of the step sizes with diversity, rather than the actual
are given by ((AAY)2AATAA Yo/ (AA*AA )s. In other  sequence of the steps. Consequently, the behavior is similar
words, the sampling of the step sizes is weighted by thdo that of the endogenous dynamics.
attractor sizes due to the kinetics. The result foe1 is The present results can be extended to higher valugs of
02/ N=(14A3+105A2+132A +24)/96N(2A + 1). [15]. Form=2, analysis using the de Bruijn sequence explic-

(d) Waiting regimeWhenp> N, ¢2/N deviates above the itly yields excellent results. For highen, we approximate
predictions of kinetic sampling. Here the agents are so dithe attractor of the exogenous dynamics by a hyperpolygon
verse that the average step size is approaching 0. At eadfclosing the origin of the phase space. Using a generating
state in the phase space, the system remains stationary fsfnction approach, and taking into account the scaling of
many time steps, waiting for some agent to reduce the magptep sizes and kinetic sampling, the computed variance of
nitude of her virtual point until strategy switching can take decisions agrees qualitatively with simulations, except for
place. This waiting effect modifies the composition of theVvalues ofa close toa.
group of fickle agents who contribute to the state transitions, We can also make qualitative predictions about the tran-
and consequently increase the step sizes and variance abgy#on from the symmetric to asymmetric phase when the
those predicted by kinetic sampling. Consider the example ofomplexity « increaseg13]. From Eq.(1), the average dis-
m=1. As shown in the inset of Fig. 1, the attractor consists oflacement in the phase space is given by
both vertical and horizontal hops, and detailed analysis
shows that only one type of agent can complete both hops. “(t) — AX0)) ~ __ 2

. : o (AH(t) = A%(0)) = k(1) y/ PNY, (2)

Since fewer and fewer agents contribute to the switching of 7(R+ 2D(k%))
states in the limitp>N, a single agent of this type will
dominate the ganfe dynamics? andg one would ngect thayhere (%) represents the mean tf(1)? for all v<D. For
o2IN approaches 0.25/. However, when waiting is pos- P~ @~1 it can be verified thatA*(t)-A*(0) is self-
sible, agents not of this correct type can wait for other agentdveraging. Suppose the dynamics leads to an attractor near
to complete the hops in the attractor, even though one woulth€ origin, with(A*(t)) — 0. Noting that(A*(0)*) ~ 1/N, we
expect that the probability of finding more than one fickleobtain the self-consistent relatiofk®)=p/2(a.~ ), where
agent is drastically less than that for one. In fact, simulationy,=1/7=0.318. This means that whenapproaches, the
shows that only 8% of the attractors consist of a single fickleaverage step size approaches 0 in the asymptotic limit. There
agent, andr-?/N approaches 0.48 rather than 0.29M. As is a critical slow down since the convergence time diverges.
shown in the inset of Fig. 2, lengthy analytic results includ-When a exceedsa,, the average step size vanishes before
ing waiting effects significantly improve the agreement withthe system reaches the attractor near the origin, so that the
simulations over the kinetic sampling prediction. state of the system is trapped at locations with at least some

Many properties of the system dependent on the transieromponents being nonzero. The interpretation is that when
dynamics also depend on its diversity. For example, sincés large, the distributions of strategies become so sparse that
diversity reduces the fraction of agents switching strategiesiotions in the phase space cannot be achieved by the switch-
at each time step, it also slows down the convergence to thieg of strategies. Note that the value af is close to the
steady state. Hence in the scaling regime, the convergens@lue of 0.337 obtained by the continuum approximafihn
time scales ap'/. Specifically, wherp> 1, the average con- or batch updat§10].

025103-3



RAPID COMMUNICATIONS

WONG, LIM, AND GAO PHYSICAL REVIEW E 70, 025103R) (2004

Game theorists may ask whether the introduction of di-between individual types of agents becomes indispensable in
versity assists the system to reach a Nash equilibrium. It hagaching the steady state behavior. Together, these mecha-
been verified that Nash equilibria consist of pure strategiesisms yield theoretical predictions with excellent agreement

[4]. Hence all frozen agents have no incentives to switChyjith simulations over 9 decades of data. By introducing di-

their strategies. Thus, the Nash equilibrium is approached e ity the variance of decisions in the symmetric phase de-
the sense that the fraction of fickle agents decreases wit

increasing diversity. In the extremely diverse limit, there are eases, showing that the maladaptive behavior is reduced.

cases that only one fickle agent switches strategy at each ste The combmatlon of scaling, kinetic sampllng and waiting
in the attractor, so that even that fickle agent cannot increadd &ccounting for the steady state properties of the system
her payoff, since on switching she always remains on thdllustrates the importance of dynamical considerations. We
majority side and loses. Then a Nash equilibrium is reache@nticipate that these dynamical effects will play a crucial role
exactly. Fom=1, for example, simulations show that a Nashin the entire symmetric phase, since whenncreases, the
equilibrium is reached in this way with probability 0.57. state motion in a high dimensional phase space can easily
In summary, we have studied the dynamical mechanismshift the tail of the virtual point distributions to the verge of
of adaptation in a multiagent system with adaptive agentstrategy switching, leading to the sparseness condition where
competing for finite resources. In the scaling regime, we finckinetic sampling and waiting effects are relevant. In general,
that agents making an adaptive move at each step are suftiue to the generic nature of these effects, we expect that they
ciently numerous that agent cooperation can be described gte relevant to multiagent systems with different payoff func-
the level of statistical distributions of strategy preferences. Ations and updating rules. Besides, these generic phenomena
high diversity, we find that the scaling mechanism is supplemay have relevance to biological evolution, since the waiting

mented by kinetic sampling, a mechanism self-imposed bynechanism is analogous to the coordination of limited ge-
the requirement to stay in the attractor. In other words, thgetic changes which result in bigger changes.

attractor dynamics favors the cooperation of larger clusters

of agents. In extremely diverse systems, we discover further We thank P. Luo, Y. C. Zhang, L. H. Tang, B. H. Wang,
a waiting mechanism, when agents who are unable to conand J. Chasnov for fruitful discussions. This work is sup-
plete the attractor dynamics alone wait for other agents t@orted by the Research Grant Council of Hong Kong
collaborate with them. When waiting is present, cooperatiofHKUST6153/01P and HKUST6062/02P
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