
Dynamical mechanisms of adaptation in multiagent systems

K. Y. Michael Wong, S. W. Lim, and Zhuo Gao
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China

(Received 22 March 2004; published 30 August 2004)

We consider multiagent systems whose agents compete for resources using strategies with adaptable pref-
erences. Diversity of initial preferences of strategies is introduced by randomly assigning virtual points to the
strategies of each agent. When diversity increases, the successive appearance of scaling, kinetic sampling and
waiting mechanisms shows that agent cooperation becomes increasingly important. Analyses yield excellent
agreement with simulations over nine decades of data.
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Many natural and artificial systems involve interacting
agents, each making independent decisions to compete for
limited resources, but globally exhibit coordinated behavior
through their mutual adaptation[1,2]. Examples include the
competition of predators in ecology, buyers or sellers in eco-
nomic markets, and routers in computer networks. While a
standard approach is to analyze the steady state behavior of
the system described by the Nash equilibria[3], it is inter-
esting to consider the dynamics of how the steady state is
approached. Dynamical effects are especially relevant in a
changing environment, such as that in economics or distrib-
uted control.

Adaptation is a collective dynamical process. When it is
achieved by small iterative steps taken by many agents,
Hamiltonian functions can be used to analyze the steady-
state behavior[4]. However, when it proceeds in large steps,
a dynamical approach is more applicable than a game-
theoretic approach. For example, when the complexity of the
agents in a multiagent system is low,a maladaptivebehavior
takes place, in which there are bursts of the population’s
decisions due to their premature rush to certain states they
perceive to be advantageous[5,6]. The resultant large fluc-
tuations indicate that the agents fail to cooperate with each
other.

Maladaptation originates from the uniformly zero prefer-
ence of strategies in the initial condition. The dependence of
initial conditions was noted in a statistical mechanical ap-
proach[4]. System efficiency can be improved by random
initial conditions in systems driven by internal information
[7], or external information[8], accompanied by hysteresis
[9]. The same is valid in models with batch update[10] and
their noisy extension[11].

In this Rapid Communication, we numerically and ana-
lytically study the dynamical mechanisms by which agents
cooperate with each other to reach steady states. This is done
by tuning the diversity of the agents in their initial prefer-
ences of strategies, so that the population of agents adapting
to the environment at each step becomes increasingly sparse
with diversity. When maladaptation gradually vanishes, we
look for evidence that cooperative mechanisms among
agents become favored or even indispensable. Concretely,
we consider a prototype of multiagent systems, in which a
population ofN agents compete in an environment of limited
resources,N being odd[2]. Each agent makes a decision
+ or − at each time step, and the minority group wins. The

decisions of each agent are prescribed bystrategies, which
are Boolean functions mapping thehistory of the winning
bits in the most recentm steps to decisions + or −. Before the
game starts, each agent randomly pickss strategies. Out of
hers strategies, each agent makes decisions according to the
most successful one at each step; the success of a strategy is
measured by itsvirtual point, which increases(decreases) by
1 if it indicates a winning(losing) decision at a time step.

Diversity of initial preferences of strategies is introduced
by randomly assigningR virtual points to thes strategies of
each agent before the game starts. Hence the initial virtual
point of each strategy obeys a multinomial distribution with
meanR/s and varianceRss−1d /s2. The ratior;R/N is re-
ferred to as thediversity. In particular, fors=2 and oddR, no
two strategies have the same virtual points throughout the
process, and the dynamics is deterministic, resulting in
highly precise simulation results useful for refined compari-
son with theories.

To describe the macroscopic dynamics of the system, we
define theD-dimensional vectorAmstd;oi ji

mstd /N, where
ji

m is the decision of agenti at statem, and D;2m is the
number of histories. While only one of theD components
corresponds to the historical statempstd of the system, the
augmentation toD components is necessary to describe the
attractor structure and the transient behavior of the system
dynamics. The inset of Fig. 1 illustrates the convergence to
the attractor for the visualizable case ofm=1. The dynamics
proceeds in the direction which tends to reduce the magni-
tude of the components ofAmstd [4]. However, a certain
amount of maladaptation always exists in the system, so that
the components ofAmstd overshoot, resulting in periodic at-
tractors with period of 2D. Every statem appears as histori-
cal states two times in a steady-state period, yielding the
winning bits − and + each exactly once. One occurence
bringsAm from positive to negative, and another bringing it
back from negative to positive, thus completing a cycle. For
m=1, the steady state is described by the sequencemstd
=−, + , + ,−, where both states − and + are followed by
− and + once each. For general values ofm, the states in an
attractor are given by a binary de Bruijn sequence of order
m+1 [12].

The effects of introducing diversity is shown in Fig. 1,
which plots the steady-state variance of the population for
decision +,s2/N;NkfAmpstdstd−kAmpstdstdlg2l /4, as a func-
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tion of thecomplexitya;D /N [5]. We found that the vari-
ance decreases significantly with diversity in thesymmetric
phase wherea,acs<0.3d, and remains unaffected in the
asymmetricphase witha.ac [13,14]. The dependence of
the variance on the diversity is further shown in Fig. 2. Fo-
cusing on the physical picture of the dynamics[15], four
regimes can be identified.

(a) Multinomial regime. When r,N−1, s2/N,N with
proportionality constants dependent onm. To analyze this
and other regimes, we letSabsvd be the number of agents
holding strategiesa and b (with a,b), where the virtual
point of strategya is initially displaced byv with respect to
b. The average ofSabsvd over initial condition is propor-
tional to the binomial distribution of virtual points, i.e.,
kSabsvdl=NCsR−vd/2

R /22D−1+R. The key to analyzing the sys-
tem dynamics is the observation that the virtual points of a
strategy displace by exactly the same amount for all agents.
Hence for a given strategy pair, the profile of the virtual

point distribution remains unchanged, but the peak position
shifts with the dynamics. If the virtual point displacement of
strategya at time t is Vastd, then the agents holding strate-
gies a and b make decisions according to strategya if v
+Vastd−Vbstd.0, and strategyb otherwise. At timet, we
can write Vastd=om kmstdja

m, wherekmstd is the number of
wins minus losses of decision + up to timet at statem, and
ja

m is the corresponding decision of strategya. Consider the
difference Amstd−Ams0d=oa,b Sabsvdsja

m−jb
mdfQsv+Vastd

−Vbstdd−Qsvdg /N. Its average can be found by introducing
the averagekSabsvdl, writing the step functionQ as a
sum over Kronecka deltas and introducing their integral

representation, using the identityeikusja
m−jb

md=cos2 ku
+ i sin ku coskusja

m−jb
md+sin2 kuja

mjb
m, and noting that

oa ja
m=0. The final result is

kAmstd − Ams0dl =E
0

2p du

2p
cosRu

sin kmstdu
sin u

3coskmstdup
nÞm

cos2 knstdu. s1d

When r,N−1, kAmst+1d−Amstdl,Os1d and is self-
averaging. SinceAms0d is Gaussian with varianceN−1, the
values ofAmstd at the attractors can be computed, and the
variance found. For example, form=1, s2/N=Nf7scR+1d2

−2cR+1cR+3+7scR+3d2g, wherecn=2−nCn/2
n for even integern.

(b) Scaling regime. Whenr,1, s2/N,r−1 with propor-
tionality constants effectively independent ofm for m not too
large [16]. In this case, Eq.(1) can be simplified tokAmstd
−Ams0dl=kmstdÎ2/pR. The average step size becomes
kAmst+1d−Amstdl=Î2/pRdmmpstd,OsN−1/2d and is self-
averaging. To interpret this result, we note that changes in
Amstd are only contributed byfickle agents with marginal
preferences of their strategies. That is, those withv+Vastd
−Vbstd= ±1 and ja

m−jb
m= 72 sgnAmstd for m=mpstd. For

largeR, the binomial virtual point distribution among agents
of a given strategy pair is effectively a Gaussian with vari-
anceR. Hence the number of agents switching strategies at
time t scales as the height of the Gaussian, which isÎ2/pR.
Thus, by spreading the virtual point distribution, diversity
reduces the step size and hence maladaptation.

As a result, each state of the attractor is confined in a
D-dimensional hypercube of sizeÎ2/pR, irrespective of the
initial position of theAm components. Starting from the ini-
tial stateAms0d, the state changes in steps of sizeÎ2/pR until
it reaches the attractor, whose 2D historical states are given
by Î2/pRdÎpR/2Ams0de and Î2/pRhdÎpR/2Ams0de−1j,
where dxe represents the decimal part ofx [17]. Averaging
over Ams0d, which are Gaussian numbers with mean 0 and
variance 1/N, the variance of decisions becomes2/N
= fsrd /2pr, where fsrd approachess1−1/4Dd /3 for r@1.
Note thatfsrd is a smooth function ofr, sinces2/N depends
on r mainly through the step size factor 1/2pr, whereasfsrd
merely provides a higher order correction to the functional
dependence. This accounts for the scaling regime in Fig. 2.
Furthermore, we note thatfsrd rapidly approaches 1/3 when

FIG. 1. The dependence of the variance of the population for
decision + on the complexity for different diversities ats=2 aver-
aged over 128 samples. The horizontal dotted line is the limit of
random decisions. Inset: the state motion of a sample in the phase
space form=1. Solid dots: attractor states.

FIG. 2. The dependence of the variance of the population for
decision + on the diversity atm=1 ands=2. Symbols: simulation
results averaged over 1024 samples. Lines: theory. Dashed-dotted
line: scaling prediction. Inset: Comparison between simulation re-
sults (symbols), theory with waiting effects included(lines) and
excluded(dashed lines).
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m increases. Hence for general values ofm, s2/N→1/6pr,
provided thatm is not too large.

(c) Kinetic sampling regime. Whenr,N, s2/N deviates
above the scaling withr−1, and is given bys2/N= fmsDd /N,
whereD;Î2N/pr is thekinetic step size, and fm is a func-
tion dependent on the memory sizem. Here Amst+1d
−Amstd scales asN−1 and is no longer self-averaging. Rather,
it is equal to 2/N times the number of agents who switch
strategies at timet, which is Poisson distributed with a mean
of N/Î2pR. However, since the attractor is formed by steps
which reverse the signof Am, the average step size in the
attractor islarger than that in the transient state. To see this,
we consider the probability ofPattsDAd of step sizesDA in
the attractor. Assuming that all states of the phase space
are equally likely to be accessed, we havePattsDAd
=oA PattsDA ,Ad, where PattsDA ,Ad is the probability
of finding the positionA with displacementDA in the
attractor. Consider the example ofm=1 in the inset of
Fig. 1. The sign reversal condition implies thatPattsDA ,Ad
=PPoisDAdpmQ f−AmsAm+DAmdg, where PPoisDAd is the
Poisson distribution of step sizes, yieldingPattsDAd
=PPoisDAdpm DAm. Thus the attractor averagesksDA±d2latt,
which are required for computing the variance of decisions,
are given by ksDA±d2DA+DA−lPoi/ kDA+DA−lPoi. In other
words, the sampling of the step sizes is weighted by the
attractor sizes due to the kinetics. The result form=1 is
s2/N=s14D3+105D2+132D+24d /96Ns2D+1d.

(d) Waiting regime. Whenr@N, s2/N deviates above the
predictions of kinetic sampling. Here the agents are so di-
verse that the average step size is approaching 0. At each
state in the phase space, the system remains stationary for
many time steps, waiting for some agent to reduce the mag-
nitude of her virtual point until strategy switching can take
place. This waiting effect modifies the composition of the
group of fickle agents who contribute to the state transitions,
and consequently increase the step sizes and variance above
those predicted by kinetic sampling. Consider the example of
m=1. As shown in the inset of Fig. 1, the attractor consists of
both vertical and horizontal hops, and detailed analysis
shows that only one type of agent can complete both hops.
Since fewer and fewer agents contribute to the switching of
states in the limitr@N, a single agent of this type will
dominate the game dynamics, and one would expect that
s2/N approaches 0.25/N. However, when waiting is pos-
sible, agents not of this correct type can wait for other agents
to complete the hops in the attractor, even though one would
expect that the probability of finding more than one fickle
agent is drastically less than that for one. In fact, simulation
shows that only 8% of the attractors consist of a single fickle
agent, ands2/N approaches 0.43/N rather than 0.25/N. As
shown in the inset of Fig. 2, lengthy analytic results includ-
ing waiting effects significantly improve the agreement with
simulations over the kinetic sampling prediction.

Many properties of the system dependent on the transient
dynamics also depend on its diversity. For example, since
diversity reduces the fraction of agents switching strategies
at each time step, it also slows down the convergence to the
steady state. Hence in the scaling regime, the convergence
time scales asr1/2. Specifically, whenr@1, the average con-

vergence time becomess2+Î2dÎr for m=1. Similarly, the
distribution of payoffs among thefrozen agents (that is,
agents who do not switch their strategies at the steady state)
also depends on the transient. Since the system dynamics
reaches a periodic attractor, they have constant average pay-
offs at the steady state. Hence any spread in their payoff
distribution is a consequence of the transient dynamics.
Thus, in the scaling regime, the mean square payoff scales as
r. Specifically, whenr@1, the mean square payoff becomes
pr for m=1. Simulation results of both the convergence time
and the mean square payoff have an excellent agreement
with the theory[15].

The results presented here can be generalized to other
cases. Consider theexogenousdynamics, in which the infor-
mationmstd was randomly and independently drawn at each
time stept [4]. The picture that the states of the game are
hopping between hypercubes in the phase space remains
valid. At the steady state, the attractor consists of hoppings
among all vertices of a hyperpolygon enclosing the origin in
the phase space, analogous to the presentendogenouscase,
in which a fraction of hyperpolygon vertices belong to the
attractor. In the scaling regime, the behavior depends on the
scaling of the step sizes with diversity, rather than the actual
sequence of the steps. Consequently, the behavior is similar
to that of the endogenous dynamics.

The present results can be extended to higher values ofm
[15]. Form=2, analysis using the de Bruijn sequence explic-
itly yields excellent results. For higherm, we approximate
the attractor of the exogenous dynamics by a hyperpolygon
enclosing the origin of the phase space. Using a generating
function approach, and taking into account the scaling of
step sizes and kinetic sampling, the computed variance of
decisions agrees qualitatively with simulations, except for
values ofa close toac.

We can also make qualitative predictions about the tran-
sition from the symmetric to asymmetric phase when the
complexitya increases[13]. From Eq.(1), the average dis-
placement in the phase space is given by

kAmstd − Ams0dl < kmstdÎ 2

psR+ 2Dkk2ld
, s2d

where kk2l represents the mean ofknstd2 for all nøD. For
r,a,1, it can be verified thatAmstd−Ams0d is self-
averaging. Suppose the dynamics leads to an attractor near
the origin, withkAmstdl→0. Noting thatkAms0d2l,1/N, we
obtain the self-consistent relationkk2l=r /2sac−ad, where
ac=1/p<0.318. This means that whena approachesac, the
average step size approaches 0 in the asymptotic limit. There
is a critical slow down since the convergence time diverges.
When a exceedsac, the average step size vanishes before
the system reaches the attractor near the origin, so that the
state of the system is trapped at locations with at least some
components being nonzero. The interpretation is that whena
is large, the distributions of strategies become so sparse that
motions in the phase space cannot be achieved by the switch-
ing of strategies. Note that the value ofac is close to the
value of 0.337 obtained by the continuum approximation[4]
or batch update[10].
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Game theorists may ask whether the introduction of di-
versity assists the system to reach a Nash equilibrium. It has
been verified that Nash equilibria consist of pure strategies
[4]. Hence all frozen agents have no incentives to switch
their strategies. Thus, the Nash equilibrium is approached in
the sense that the fraction of fickle agents decreases with
increasing diversity. In the extremely diverse limit, there are
cases that only one fickle agent switches strategy at each step
in the attractor, so that even that fickle agent cannot increase
her payoff, since on switching she always remains on the
majority side and loses. Then a Nash equilibrium is reached
exactly. Form=1, for example, simulations show that a Nash
equilibrium is reached in this way with probability 0.57.

In summary, we have studied the dynamical mechanisms
of adaptation in a multiagent system with adaptive agents
competing for finite resources. In the scaling regime, we find
that agents making an adaptive move at each step are suffi-
ciently numerous that agent cooperation can be described at
the level of statistical distributions of strategy preferences. At
high diversity, we find that the scaling mechanism is supple-
mented by kinetic sampling, a mechanism self-imposed by
the requirement to stay in the attractor. In other words, the
attractor dynamics favors the cooperation of larger clusters
of agents. In extremely diverse systems, we discover further
a waiting mechanism, when agents who are unable to com-
plete the attractor dynamics alone wait for other agents to
collaborate with them. When waiting is present, cooperation

between individual types of agents becomes indispensable in
reaching the steady state behavior. Together, these mecha-
nisms yield theoretical predictions with excellent agreement
with simulations over 9 decades of data. By introducing di-
versity, the variance of decisions in the symmetric phase de-
creases, showing that the maladaptive behavior is reduced.

The combination of scaling, kinetic sampling and waiting
in accounting for the steady state properties of the system
illustrates the importance of dynamical considerations. We
anticipate that these dynamical effects will play a crucial role
in the entire symmetric phase, since whena increases, the
state motion in a high dimensional phase space can easily
shift the tail of the virtual point distributions to the verge of
strategy switching, leading to the sparseness condition where
kinetic sampling and waiting effects are relevant. In general,
due to the generic nature of these effects, we expect that they
are relevant to multiagent systems with different payoff func-
tions and updating rules. Besides, these generic phenomena
may have relevance to biological evolution, since the waiting
mechanism is analogous to the coordination of limited ge-
netic changes which result in bigger changes.
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